

Housfield CT-values correction with the iMAR software, impacts on dosimetrics calculation for radiation therapy

Authors: Stephane MURARO & Geoffrey GALLIANO

stephane.muraro@gmail.com

Purpose

- iMAR: iterative Metal Artefact Reduction algorithm by Siemens
- Hips prosthesis implants artifacts uncertainties on HU values
- Metal Artifacts create several approximations in radiation therapy

Methods

- Study on 30 patient with/without prosthesis implants :
 - Evaluate the gain of iMAR in CT-Scan images (HU)
 - Dose calculation comparison before/after iMAR with Eclipse®

- Study with phantom :
 - Accuracy in retrieving correct HU and Standard Deviation ?
 - Dose calculation comparison before/after iMAR with Eclipse®
 - Monitoring of a real treatment on a Clinac 2100C

Methods

<u>Customized phantom : Quasar + Prostatic insert</u>

- Quasar[™] with 2 metal and 2 acrylic inserts
- Customized prostatic insert :
 - 4 gold seeds
 - \rightarrow 3 inserts from the CIRS MODEL 062 \rightarrow H₂O (1), Liver (2), Muscle (3)
 - ➤ 1 ion chamber insert holder for dosimetry

Results: Patient study

Image quality: contouring

Streaking artefacts prevent proper definition of tissue outline

Accuracy increased with iMAR for contouring the prostate

Results: Patient study

Dosimetry analysis

Substraction dose calculation with/without iMAR

Dose calculation differences: range of +13,22 Gy to -12,52 Gy

Results: Phantom study

Before/after iMAR correction

- Inside streaking artifact :
 - HU and SD are improved
- Outside streaking artifact :
 - HU and SD are constant

	HU values (Standard Deviation)			
ROI	Muscle	Liver	H ₂ O	In Artifacts
Reference	53,6 (±15,6)	58,7 (±18,6)	-2,3 (±56,6)	119,5 (±11,8)
No iMAR	22,1 (±104,9)	58,3 (±24,6)	-24,6 (±117,4)	20,6 (±102,8)
iMAR	64,4 (±26)	59,6 (±19,6)	9,4 (±58,5)	130,4 (±30)

Results: Phantom study

Dose calculation (VMAT 23X) in T.P.S. Eclipse®

- Same dose constraint (VMAT Optimization) is applied
- Dose distribution different between the two treatment plans
- For same Dose Max: dose covering improved in muscle by iMAR

Results: Phantom study

Real treatment in Clinac (with/without iMAR correction)

2 measured points: outside dose constraint and in Muscle insert

- Dose calculated is more accurate with dose measured
- Impact is more important out of dose constraint

Conclusions

iMAR:

- Increase confidence in countouring
- Very close reproduction of HU values and SD
- Dose calculation is improved for the dose covering

iMAR improves patients treatment